FORTUNA has worked out a guide for our customers as a design reference.

This guide contains:


*metal stamping process

*material selection

*different metal stamping dies

*Cost saving consideration

*And more

Metal forming is a complex process that can include a number of tactics-blanking, punching, bending and piercing and son on.

Those tactics allow manufactures to  Metal fabricator  produce high-quality and cost-effective metal components. However, each project varies in materials, design and complexity.

Chapter 1: What is the process of metal stamping?
Metal stamping processes are included a wide variety of associated operations. Determine which process is applicable for a particular part is a critical step in the design process.The part design may require one or more process for a complete part.

Blanking: Blankingis a metal fabricating process, during which a metal work piece is removed from the primary metal strip or sheet when it is punched. The material that is removed is the new metal work piece or blank. Sheet metal blanking on steel, stainless steel, aluminum, copper, brass and alloy is carried out with punching and matrixes.
Piercing: Piercing is a shearing process where a punch and die are used to create a hole in sheet metal or a plate. The process and machinery are usually the same as that used in blanking, except that the piece being punched out is scrap in the piercing process. An alternative name of piercing is punching.
Bending: Bending is a process in which the metal is deform in such a way that the length and thickness before bending and after bending remains same. It only changes shape of the work piece.Bending is a process that occurs when a metal is distorted bu deforming the material and changing its shape.
Forming: Forming is a process that similar to bending and complex parts such as U sections and channel sections of various profiles can be economical produced with multiple bends without altering the material thickness.
Drawing(Deep & Shallow): Drawing is the process of drawing the blank of sheet metal that is held at the edges, and the middle section of the part is forced by a punch into a die to stretch the metal into a shape defined by the die set.Deep draw refers to the process of pulling a flat “blank” of material over a radiused die edge and into a cavity, producing a closed bottom, round or irregularly shaped cup or cylinder. It should not be confused with stretch -forming. The blank is actually forced into a plastic state as it is dragged over the die radius and down into the die. This process is done under calculated and very controlled conditions involving blank-holding pressures, punch and die radii, punch speed and lubrication.Anatomy of a Deep DrawThe 2 stages of a draw are cupping and drawing. When the punch first contacts the blank, the nose of the punch initially embosses the material into the die. Some stretching occurs at this point and produces what is known as a “shock line”. This is a pronounced area of thinning around the radius at the bottom and just up into the straight wall of the shell. Depending on the shape of the bottom, the material may still be near original thickness across the bottom face (flat bottom) or thinned out by a stretching action (spherical bottom). As the blank is pulled into the die, the material at the circumference gathers and the wall progressively thickens. As the blank is pulled in to near shell diameter, the material thickens to as much as 10% over the original thickness. Clearance must be provided for this thickening to occur so that the material will not get bound up between punch and die. In addition, the punch must be tapered so that the finished shell can be stripped off. Therefore, a drawn shell will taper from bottom to top. It is possible to minimize this through subsequent sizing operations, but not eliminate it entirely.The blank used to produce a shell is cut from rolled strip material with a grain structure elongated across the blank in the direction of rolling. Since this cross-grain does not pull into a drawn shape evenly from all directions, great stresses are induced in the shell wall. Due to these uneven stresses, a drawn shell will not be perfectly round. A flange added to the top of the shell will minimize this, but the smaller the flange, the less strength it has to keep the shell round.Specifying a Drawn ShellSince the original blank is so altered by the deep draw process, the wall thickness cannot be specified in terms of mill tolerances. Depending on application, the three ways of specifying the thickness of material in a shell would be to call out the thickness of material to be used, the minimum wall thickness or the maximum wall thickness.